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Abstract

The combinatorial method is useful to obtain conserved quantities for some
nonlinear integrable systems, as an alternative to the Lax representation
method. Here we extend the combinatorial method and introduce an elementary
geometry to show the vanishing of the Poisson brackets of the Hamiltonian
structure for a Lotka–Volterra system of competing species. We associate a set
of points on a circle with a set of species of the Lotka–Volterra system, where
the dominance relations between points are given by the dominance relations
between the species. We associate each term of the conserved quantities with
a subset of points on the circle, which simplifies to show the vanishing of the
Poisson brackets.

PACS numbers: 02.10.Ox, 02.30.Ik, 87.23.−n

1. Periodic Lotka–Volterra system

The Toda lattice is known to have soliton solutions [1]. The periodic Toda lattice is a typical
nonlinear integrable system, which has m conserved quantities [2–4] for 2m variables. The
quantities are obtained by using the Lax representation [3, 4] as well as by using a combinatorial
method [2]. Another typical system is a periodic Lotka–Volterra system of competing species

dPi

dt
= Pi

⎛
⎝ s∑

j=1

Pi−j −
s∑

j=1

Pi+j

⎞
⎠ (1)

for relative abundances Pi, i = 1, 2, . . . , m. The system (1) with s = 1 is known to be
an integrable discretization of Korteweg de Vries equation [5–8]. The Lax representation is
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obtained for the general integer s, 0 < s < m
2 , by Bogoyavlensky [7–11], which gives the

conserved quantities as in the case of the Toda lattice. For the non-periodic case of infinite m,
soliton solutions are known as in the case of the Toda lattice [12, 13].

The interpretation of Hamiltonian structures and Lax representations in the framework
of the r-matrix theory [14–18] is useful to study the Toda lattice, the Lotka–Volterra system
equation (1) and other related problems. Extending the study [17] of s = 1, the vanishing
of the Poisson brackets for the Hamiltonian structure of equation (1) was naturally shown in
[19] considering the r-matrix for the Lax representation [8, 18], which is the solution of the
Yang–Baxter equation.

Hamiltonian structure of Lotka–Volterra systems gives various interesting problems
[20–22]. Here we restrict our attention to equation (1) and consider the Poisson structure
[8] as in section 2. For the case m = 2s + 1 for equation (1), the s + 1 conserved quantities are
given by using a combinatorial method [25]. The quantities are obtained from a deterministic
approximation of the quantities (martingales) for a stochastic model of competing species
[23, 24] . We extend the combinatorial method [25] in section 3 to introduce an elementary
geometry [26–28], which gives another approach to the vanishing of the Poisson brackets
for the case m = 2s + 1. We associate a set of points on a circle with a set of species of
the Lotka–Volterra system, where the dominance relations between points are given by the
dominance relations between the species. We associate each term of the conserved quantities
with a subset of points on the circle, which simplifies the argument to show the vanishing
of the Poisson brackets as given in section 4. In section 5 we discuss possible problems to
apply our method. We briefly show that our combinatorial method is obtained to calculate
the asymptotic probability of coexistence of species in a population [24], as in a problem of
population genetics [32].

2. Conserved quantities and Hamiltonian structure

The conserved quantities of equation (1), for positive integers m and s < m
2 , are obtained

systematically from the Lax representation by Bogoyavlensky [8]. For example the first three
conserved quantities [19] are

I1 =
m∑

i=1

Pi, (2)

I2 =
m∑

i=1

⎛
⎝1

2
P 2

i + Pi

s∑
j=1

Pi+j

⎞
⎠ , (3)

I3 =
m∑

i=1

⎛
⎝1

3
P 3

i + Pi

s∑
j=1

Pi+j

j+s∑
l=0

Pi+l

⎞
⎠ . (4)

Here we introduce another system of conserved quantities by using a combinatorial method.
The dynamical system, equation (1), has the Poisson structure [8], and we apply the structure
to our case m = 2s + 1. We show the vanishing of the Poisson bracket for our system of
conserved quantities [25].

Define aij by the equation
2s+1∑
j=1

aijPj ≡
s∑

k=1

Pi−k −
s∑

k=1

Pi+k. (5)
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We say the species i dominates the species j (j ≺ i) if aij = 1. If aij = −1, we say the
species i is dominated by the species j (i ≺ j). Consider 2α + 1 species out of the 2s + 1
species. If each of the 2α + 1 species dominates the other α species and is dominated by
the other remaining α species, then we say the 2α + 1 species are in a regular tournament
of order 2α + 1. Take 2α + 1 individuals (particles) at random from the system. Let Gα be
the probability that the corresponding 2α + 1 species of the 2α + 1 particles are in a regular
tournament, then the Gα, α = 0, 1, 2, . . . , s, are conserved quantities [25], that is to say,

d

dt
Gα = 0. (6)

For example, for the case 2s + 1 = 5 , we have the conserved quantities,

G0 = P1 + P2 + P3 + P4 + P5, (7)

G1 = P1P2P4 + P2P3P5 + P3P4P1 + P4P5P2 + P5P1P3, (8)

G2 = P1P2P3P4P5. (9)

Put vi = log(Pi) for i = 1, 2, . . . , 2s + 1 and � as the skew-symmetric operator with the
entries

λi,i−k = 1, λi,i+k = −1, k = 1, 2, . . . , s.

Equation (1) takes the form of the Poisson structure,

v̇i =
s∑

k=1

exp[vi−k] −
s∑

k=1

exp[vi+k] =
s∑

k=−s

λik exp[vi+k] =
2s+1∑
j=1

λij

∂H

∂vj

, (10)

with the Hamiltonian

H =
2s+1∑
j=1

exp[vj ]. (11)

Putting Pi = exp[vi] for i = 1, 2, . . . , 2s + 1 into Gα , we get the conserved quantities
Fα, α = 0, 1, . . . , s, of equation (10). For example for s = 2,

F0 = exp[v1] + exp[v2] + exp[v3] + exp[v4] + exp[v5], (12)

F1 = exp[v1 + v2 + v4] + exp[v2 + v3 + v5] + exp[v3 + v4 + v1]

+ exp[v4 + v5 + v2] + exp[v5 + v1 + v3], (13)

F2 = exp[v1 + v2 + v3 + v4 + v5]. (14)

Note that each of the conserved quantities is not the Casimir function. We give a proof of the
following theorem of the vanishing of the Poisson brackets for equation (10).

Theorem

{Fq, Fr} =
2s+1∑
i,j=1

λij

∂Fq

∂vi

∂Fr

∂vj

= 0, (15)

for q, r = 1, 2, . . . , s.
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3. Configurations of points on a circle

Consider two points on a unit circle, X and Y, whose coordinates are (cos x, sin x) and
(cos y, sin y), 0 � x, y < 2π , respectively. If the counterclockwise way from X to Y on the
circle is shorter than the clockwise way, we denote X ≺ Y . If the counterclockwise way from
Y to X on the circle is shorter than the clockwise way, we denote Y ≺ X. We define IX,Y = 1
for Y ≺ X, IX,Y = −1 for X ≺ Y , and IX,Y = 0 otherwise. Let us denote the shorter arc with
end points X, Y , by the arc [X, Y ].

Consider a unit circle. Take 2s + 1 diameters, j = 1, . . . , 2s + 1, arbitrarily on it. Number
the 2(2s + 1) ends (points) of the diameters in counterclockwise way starting from an arbitrary
end (point). Name the points 1, 3, 5, . . . , 2(2s + 1) − 1 as W1,W2, . . . ,W2s+1 respectively,
and 2, 4, 6, . . . , 2(2s + 1) as w1, w2, . . . , w2s+1 respectively. Let us denote the set of points
as W = {W1,W2, . . . , W2s+1} and w = {w1, w2, . . . , w2s+1}. The 2s + 1 points (species)
W1,W2, . . . ,W2s+1 are in a regular tournament of order 2s +1, as Wj ≺ Wj+1,Wj+2, . . . ,Wj+s

and Wj−1,Wj−2, . . . , Wj−s ≺ Wj , for j = 1, 2, . . . , 2s +1. Each of the 2s +1 points (species)
Wi have variable Pi(t) for i = 1, 2, . . . , 2s +1, which evolves by equation (1) with m = 2s +1.
We consider the two subsets of the 2s + 1 diameters as given in the following I, II and III.

Take the ends of 2q + 1 diameters out of the above 2s + 1 diameters in counterclockwise
way as A1, A2, . . . , A2q+1, where {A1, A2, . . . , A2q+1} = A ⊂ W . Take the ends of 2r + 1
diameters out of the above 2s + 1 diameters in counterclockwise way as B1, B2, . . . , B2r+1,
where {B1, B2, . . . , B2r+1} = B ⊂ W . Then the following I, II and III are mutually equivalent.

(I) a1 ≺ A1 ≺ a2 ≺ A2 · · · ≺ aj ≺ Aj ≺ aj+1 · · · a2q+1 ≺ A2q+1 ≺ a1, where
{a1, a2, . . . , a2q+1} = a ⊂ w and aj+q+1 is the other end of the diameter with the
end Aj for j = 1, 2, . . . , 2q + 1.

b1 ≺ B1 ≺ b2,≺ B2 . . . ≺ bj ≺ Bj ≺ bj+1 . . . b2r+1 ≺ B2r+1 ≺ b1, where
{b1, b2, . . . , b2r+1} = b ⊂ w and bk+r+1 is the other end of the diameter with the end Bk

for k = 1, 2, . . . , 2r + 1.
(II) Aj ≺ Aj+1, Aj+2, . . . , Aj+q and Aj−1, Aj−2, . . . , Aj−q ≺ Aj , for j = 1, 2, . . . , 2q + 1.

Bk ≺ Bk+1, Bk+2, . . . , Bk+r and Bk−1, Bk−2, . . . , Bk−r ≺ Bk , for k = 1, 2, . . . ,

2r + 1.

(III) The points A1, A2, . . . , A2q+1, are in a regular tournament of order 2q + 1.
The points B1, B2, . . . , B2r+1 are in a regular tournament of order 2r + 1.

Assume there exist exactly 0 < γ arcs [Ajl
, Bkl

], Ajl
∈ A and Bkl

∈ B, l = 1, 2, . . . , γ

with no point of a ∪ A ∪ b ∪ B in the arc [Ajl
, Bkl

] other than Ajl
, Bkl

.
We call B ′

kl
= Ajl

and A′
jl

= Bkl
for each pair of points {Ajl

, Bkl
}, l = 1, 2, . . . , γ, A′

j =
Aj for Aj which does not coincide with any one of Ajl

, l = 1, 2, . . . , γ , for j = 1, 2, . . . , 2q +
1, and B ′

k = Bk for Bk which does not coincide with any one of Bkl
, l = 1, 2, . . . , γ , for

k = 1, 2, . . . , 2r + 1.
Let us call the pair of sets A′ = {A′

1, A
′
2, . . . , A

′
2q+1} and B ′ = {B ′

1, B
′
2, . . . , B

′
2r+1},

the conjugate pair of sets of the above pair of sets, A = {A1, A2, . . . , A2q+1} and
B = {B1, B2, . . . , B2r+1}.

We see,

(I′) a1 ≺ A′
1 ≺ a2 ≺ A′

2 · · · ≺ aj ≺ A′
j ≺ aj+1 · · · a2q+1 ≺ A′

2q+1 ≺ a1, where aj

is the other end of the diameter with the end Aj+q for j = 1, 2, . . . , 2q + 1 and
{a1, a2, . . . , a2q+1} = a ⊂ w.

b1 ≺ B ′
1 ≺ b2,≺ B ′

2 . . . ≺ bj ≺ B ′
j ≺ bj+1 . . . b2r+1 ≺ B ′

2r+1 ≺ b1, where
bk is the other end of the diameter with the end Bk+r for k = 1, 2, . . . , 2r + 1 and
{b1, b2, . . . , b2r+1} = b ⊂ w.

4
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(II′) A′
j ≺ A′

j+1, A
′
j+2, . . . , A

′
j+q and A′

j−1, A
′
j−2, . . . , A

′
j−q ≺ A′

j , for j = 1, 2, . . . , 2q + 1.

B ′
k ≺ B ′

k+1, B
′
k+2, . . . , B

′
k+r and B ′

k−1, B
′
k−2, . . . , B

′
k−r ≺ B ′

k , for k = 1, 2, . . . ,

2r + 1.

(III′) The points of the set A′ = {A′
1, A

′
2, . . . , A

′
2q+1} are in a regular tournament of order

2q + 1.
The points of the set B ′ = {B ′

1, B
′
2, . . . , B

′
2r+1} are in a regular tournament of order

2r + 1.

We see that (A′)′ = A, (B ′)′ = B and A∪B = A′ ∪B ′. The conjugate pair of sets A and
B is a pair of sets A′ and B ′, and the conjugate pair of sets A′ and B ′ is a pair of sets A and B.

4. Vanishing of the Poisson brackets

The theorem is obvious for the case q = r . In this section we assume q �= r . We have the
following lemmas from I, II, III and I ′, II ′, III ′ of the previous section.

Lemma 1. There exist 0 < γ arcs [Ajl
, Bkl

]l = 1, 2, . . . , γ with no point of a ∪ A ∪ b ∪ B in
the arc [Ajl

, Bkl
] other than Ajl

, Bkl
.

Proof. We can assume q < r without loss of generality. We see that there is an arc generated
by the above 2q + 1 points a1, a2, . . . , a2q+1, with at least two points of the above 2r + 1
points b1, b2, . . . , b2r+1. Consider the case in which the arc [ai, ai+1] has two points of b, as
aj ≺ bk ≺ bk+1 ≺ aj+1. Then for example if aj ≺ bk ≺ Aj ≺ Bk ≺ bk+1 ≺ aj+1, the arc
{Aj , Bk} has no point of a ∪ A ∪ b ∪ B in the arc [Aj, Bk] other than Aj , Bk . For example if
aj ≺ Aj ≺ bk ≺ Bk ≺ bk+1 ≺ aj+1, the arc [Bk+1+r , Aj+1+q ] has no point of a ∪ A ∪ b ∪ B

other than Bk+1+r , Aj+1+q .
We can apply the above argument to the other possible cases. �

Lemma 2. Each of the points Ajl
, Bkl

belongs to one and only one arc, [Ajl
, Bkl

], for
l = 1, 2, . . . , γ .

Lemma 3. For each l = 1, 2, . . . , γ ,

2r+1∑
k=1

IAjl
,Bk

+
2r+1∑
k=1

IA′
jl

,B ′
k
= 0, (16)

2q+1∑
j=1

IAj ,Bkl
+

2q+1∑
j=1

IA′
j ,B

′
kl

= 0. (17)

Proof. For each l = 1, 2, . . . , γ ,

IAjl
,Bkl

+ IAj ′
l
,Bk′

l

= 0. (18)

We have also ∑
k �=kl

IAjl
,Bk

=
∑
k �=kl

IA′
jl

,B ′
k
= 0, (19)

∑
j �=jl

IAj ,Bkl
=

∑
j �=jl

IA′
j ,B

′
kl

= 0, (20)

which give equations (16) and (17). �

5



J. Phys. A: Math. Theor. 42 (2009) 025201 Y Itoh

Lemma 4.

(1) The number of points Aj ∈ A, j �= jl for l = 1, 2, . . . , γ , in the arc [Bk, bk+1], is equal
to the number of points of Aj ∈ A, j �= jl for l = 1, 2, . . . , γ , in the arc [bk+r+1, Bk+r+1]
for k = 1, 2, . . . , 2r + 1.

(2) The number of points of Bk ∈ B, k �= kl for l = 1, 2, . . . , γ , in the arc [Aj , aj+1] is equal
to the number of points of Bk ∈ B, k �= kl for l = 1, 2, . . . , γ , in the arc [aj+q+1, Aj+q+1]
for j = 1, 2, . . . , 2q + 1.

Proof. By considering lemma 2, the above (1) is easily shown for the following two cases:

(1) Bkl
≺ Ajl

≺ ajl+1 ≺ Ajl+1 ≺ ajl+2 · · · ≺ ajl+ν ≺ bkl+1;
(2) Bkl

≺ Ajl
≺ ajl+1 ≺ Ajl+1 ≺ ajl+2 · · · ≺ ajl+ν ≺ Ajl+ν ≺ bkl+1.

The other cases are also shown in the same way. �

Lemma 5. For j = 1, 2, . . . , 2q + 1,∑
k �=kl for l=1,2,...,γ

IAj ,Bk
=

∑
k �=kl for l=1,2,...,γ

IA′
j ,B

′
k
= 0. (21)

For k = 1, 2, . . . , 2r + 1,∑
j �=jl for l=1,2,...,γ

IAj ,Bk
=

∑
j �=jl for l=1,2,...,γ

IA′
j ,B

′
k
= 0. (22)

Proof. We see from lemma 4.
�

Lemma 6. For j = 1, 2, . . . , 2q + 1,

2r+1∑
k=1

(IAj ,Bk
+ IA′

j ,B
′
k
) = 0. (23)

For k = 1, 2, . . . , 2r + 1,

2q+1∑
j=1

(IAj ,Bk
+ IA′

j ,B
′
k
) = 0. (24)

Proof. We see from lemmas 3 and 5. �

Lemma 7.

2q+1∑
j=1

2r+1∑
k=1

(IAj ,Bk
+ IA′

j ,B
′
k
) = 0. (25)

Proof. We see directly from lemma 6.
�

Let us determine t’s by Aj = Wt(Aj ) and A′
j = Wt(A′

j )
, for j = 1, 2, . . . , 2q + 1, and

Bk = Wt(Bk) and B ′
k = Wt(B ′

k)
for k = 1, 2, . . . , 2r + 1.

Lemma 8. Let each of the 2s + 1 points Wi have variable vi(t) for i = 1, 2, . . . , 2s + 1, which
evolves by equation (10) with m = 2s + 1. Consider the above pair of sets A and B and its

6
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conjugate pair of sets A′ and B ′. Consider the original name of the points in the sets A,B,A′

and B ′. Then for the Poisson brackets,⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(Aj )

⎤
⎦ , exp

[
2r+1∑
k=1

vt(Bk)

]⎫⎬
⎭

=
2s+1∑

l,m=1

λlm

∂ exp
[ ∑2q+1

j=1 vt(Aj )

]
∂vl

∂ exp
[ ∑2r+1

k=1 vt(Bk)

]
∂vm

, (26)

⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(A′
j )

⎤
⎦ , exp

[
2r+1∑
k=1

vt(B ′
k)

]⎫⎬
⎭

=
2s+1∑

l,m=1

λlm

∂ exp
[ ∑2q+1

j=1 vt(A′
j )

]
∂vl

∂ exp
[ ∑2r+1

k=1 vt(B ′
k)

]
∂vm

, (27)

we have⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(Aj )

⎤
⎦ , exp

[
2r+1∑
k=1

vt(Bk)

]⎫⎬
⎭ +

⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(A′
j )

⎤
⎦ , exp

[
2r+1∑
k=1

vt(B ′
k)

]⎫⎬
⎭ = 0 (28)

Proof. We see IAi,Aj
= λij for the i, j, 1, 2, . . . , 2s + 1. Since

exp

⎡
⎣2q+1∑

j=1

vt(Aj ) +
2r+1∑
k=1

vt(Bk)

⎤
⎦ = exp

⎡
⎣2q+1∑

j=1

vt(A′
j )

+
2r+1∑
k=1

vt(B ′
k)

⎤
⎦ , (29)

by using lemma 7 we have⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(Aj )

⎤
⎦ , exp

⎡
⎣2r+1∑

j=1

vt(Bk)

⎤
⎦

⎫⎬
⎭ +

⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(A′
j )

⎤
⎦ , exp

[
2r+1∑
k=1

vt(B ′
k)

]⎫⎬
⎭

=
2s+1∑

l,m=1

λlm

(
∂ exp

[ ∑2q+1
j=1 vt(Aj )

]
∂vl

∂ exp
[ ∑2r+1

k=1 vt(Bk)

]
∂vm

(30)

+
∂ exp

[ ∑2q+1
j=1 vt(A′

j )

]
∂vl

∂ exp
[ ∑2r+1

k=1 vt(B ′
k)

]
∂vm

)
(31)

= exp

⎡
⎣2q+1∑

j=1

vt(Aj ) +
2r+1∑
k=1

vt(Bk)

⎤
⎦ 2q+1∑

j=1

2r+1∑
k=1

(IAj ,Bk
+ IA′

j ,B
′
k
) = 0. (32)

�

Proof of theorem. Let Tα be the set of all possible tournaments generated by the 2α + 1 points
of the set W for α = 1, 2, . . . , s. Then

{Fq, Fr} =
⎧⎨
⎩

∑
A⊂Tq

exp

⎡
⎣2q+1∑

j=1

vt(Aj )

⎤
⎦ ,

∑
B⊂Tr

exp

[
2r+1∑
k=1

vt(Bk)

]⎫⎬
⎭

=
∑
A⊂Tq

∑
B⊂Tr

⎧⎨
⎩exp

⎡
⎣2q+1∑

j=1

vt(Aj )

⎤
⎦ , exp

[
2r+1∑
k=1

vt(Bk)

]⎫⎬
⎭ = 0. (33)

7
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Since the Poisson bracket for each pair of the sets A ∈ Tq and B ∈ Tr ,
{

exp
[∑2q+1

j=1 vt(Aj )

]
,

exp
[∑2r+1

k=1 vt(Bk)

]}
is canceled by the Poisson bracket

{
exp

[∑2q+1
j=1 vt(A′

j )

]
, exp

[ ∑2r+1
k=1

vt(B ′
k)

]}
for the conjugate pair of sets A′ ∈ Tq and B ′ ∈ Tr which is uniquely determined

by the pair A and B. �

5. Motivation and discussion

We can generalize the combinatorial method to get the conserved quantities [30] for the general
periodic case by Bogoyavlensky [7]. We briefly review our previous study [30] to suggest our
next problem. We also show that the form of conserved quantities is convenient to study a
stochastic model of interacting particles which is a simplified model for population genetics,
ecology and other problems [23, 24, 29, 30]. The form of conserved quantities, originally
obtained to calculate the asymptotic probability of coexistence of species, works to study the
deterministic approximation of the stochastic model as a nonlinear integrable system, as we
could see in the previous sections.

Consider an interacting particle system of n particles for competition among m species,
1, 2, . . . , m, whose abundances of particles at time t are n1(t), n2(t), . . . , nm(t), respectively.
For each pair of species a dominance relation is defined. Namely, by an interaction of a particle
of species i and a particle of species j , the interacting two particles become two particles of
species i with probability 1/2 + aij and become two particles of species j with probability
1/2 + aji where aij are defined by

2
m∑

j=1

aijPj ≡
s∑

k=0

Pi−k −
s∑

k=0

Pi+k. (34)

From the skew symmetry aij + aji = 0, we see that the total number of particles does not
change by interactions, that is to say, n1(t) + n2(t) + · · · + nm(t) = n. A random interaction
takes place, where each interacting pair of particles is equally likely to be chosen, in a time
interval 	t .

Note that the case s = 0 of our stochastic model gives the Moran version [31] of the
Fisher–Wright model for random sampling effect in population genetics.

For infinite n, the relative abundance Pi of species 1, 2, . . . , m is given by

dPi

dt
= Pi

(
s∑

k=0

Pi−k −
s∑

k=0

Pi+k

)
. (35)

We introduce our conserved quantities. We say the species i dominates the species j (j ≺ i),
if 2aij = 1. If 2aij = −1, we say the species i is dominated by the species j (i ≺ j). If
aij = 0, we say the species i is neutral to the species j (i ∼ j, j ∼ i). Hence the relation
i ≺ j ≺ k does not imply i ≺ k. Consider l species out of the m species. If each of the l
species dominates the q species out of the other l − 1 species, it is dominated by the q species
out of the remaining l −q −1 species, and is neutral to the other remaining l −2q −1 species,
then we say that the l species are in a (l, q) regular tournament.

For example, consider the case of seven species with the relations, i − 3 ∼ i, i − 2 ≺
i, i − 1 ≺ i , for each species i = 1, 2, . . . , 7. The seven species are in a (7, 2) regular
tournament.

Take l particles at random from the system. Let Gl,q be the probability that the
corresponding species of the l particles are in a (l, q) regular tournament. Then the probability
Gl,q is the conserved quantity of equation (35),

d

dt
Gl,q = 0. (36)

8
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For example, when m = 7 and s = 2, the conserved quantities are G1,0 = P1 + P2 +
P3 + P4 + P5 + P6 + P7,G2,0 = P1P4 + P2P5 + P3P6 + P4P7 + P5P1 + P6P2 + P7P3,G4,1 =
P1P2P4P6 +P2P3P5P7 +P3P4P6P1 +P4P5P7P2 +P5P6P1P3 +P6P7P2P4 +P7P1P3P5,G7,2 =
P1P2P3P4P5P6P7.

When m = 2s + 1,G2r+1,r , which is equal to G2r+1 in section 2, is conserved quantities
for r = 0, 1, . . . , s.

To extend our combinatorial method to show the vanishing of the Poisson bracket for
general m and s is our next problem.

We briefly explain the stochastic model [23, 24]. Consider the case m = 3, s = 1 of finite
n. Let the abundances of the three types be (n1, n2, n3) at time t and consider the product of
the abundances of three species. The abundances at t + 	t are

(n1 − 1, n2 + 1, n3) with probability
2n1n2

n(n − 1)

(n1, n2 − 1, n3 + 1) with probability
2n2n3

n(n − 1)

(n1 + 1, n2, n3 − 1) with probability
2n3n1

n(n − 1)

(n1, n2, n3) with probability
n1(n1 − 1) + n2(n2 − 1) + n3(n3 − 1)

n(n − 1)
.

So the expected product at t + 	t is equal to
(
1 − 2 (3

2)
n(n−1)

)
n1n2n3. Consider the probability

G1(t) at time t. For the stochastic process G1(t), we have the expectation of G1(t + 	t)

conditioning on the value G1(t) as

E(G1(t + 	t)|G1(t)) =
(

1 − 2

(3
2

)
n(n − 1)

)
G1(t). (37)

For the general case m = 2s + 1 we have

E(Gr(t + 	t)|Gr(t)) =
(

1 − 2

(2r+1
2

)
n(n − 1)

)
Gr(t) (38)

for r = 0, 1, 2, . . . , s. We put 2
n−1 = 	t . We then obtain

E(Gr(t + 	t)|Gr(t)) =
(

1 −
(

2r + 1

2

)	t

n

)
Gr(t) (39)

for r = 0, 1, 2, . . . , s. Applying this formula and making use of the argument by Kimura [32]
for the Fisher–Wright model, we can show that the asymptotic probability of coexistence of
the species, which make regular tournament of order 2r + 1, is proportional to the expected
value of Gr(t) starting from Gr(0) by calculating the second largest eigen value and its eigen
vector of the corresponding Markov chain [24].

For the general case of m and s, we have the expected value of Gl,q at time t+u conditioning

on the value of Gl,q at time t approximating
(
1 − (

l

2

)	t

n

) u
	t by exp

(−(
l

2

)
u
n

)
as

E(Gl,q(t + u)|Gl,q(t)) = exp

(
−

(
l

2

)
u

n

)
Gl,q(t), (40)

which means the expected Gl,q is time invariant for n = ∞. From the above we see that our
conserved quantities were obtained naturally to study the asymptotic behavior of the stochastic
model. We get a system of stochastic differential equations as a diffusion approximation for
the change of relative abundances of our stochastic model and obtain an analogous result to
equation (40) for Gl,q applying the Ito formula [29, 30].

9
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Another possible application of our method will be to the Toda lattice. Henon’s method
[2] to get conserved quantities is combinatorial. To extend our combinatorial method, we need
to define the conjugate pair of sets for the conserved quantities and to show the vanishing of
the Poisson bracket for the Toda lattice. This is another next problem for our study.
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