A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42025201
(http://iopscience.iop.org/1751-8121/42/2/025201)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.154
The article was downloaded on 03/06/2010 at 07:45

Please note that terms and conditions apply.

A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system

Yoshiaki Itoh ${ }^{1}$
The Institute of Statistical Mathematics and the Graduate University for Advanced Studies, 4-6-7 Minami-Azabu Minatoku, Tokyo 106-8569, Japan
E-mail: itoh@ism.ac.jp

Received 6 April 2008, in final form 23 October 2008
Published 25 November 2008
Online at stacks.iop.org/JPhysA/42/025201

Abstract

The combinatorial method is useful to obtain conserved quantities for some nonlinear integrable systems, as an alternative to the Lax representation method. Here we extend the combinatorial method and introduce an elementary geometry to show the vanishing of the Poisson brackets of the Hamiltonian structure for a Lotka-Volterra system of competing species. We associate a set of points on a circle with a set of species of the Lotka-Volterra system, where the dominance relations between points are given by the dominance relations between the species. We associate each term of the conserved quantities with a subset of points on the circle, which simplifies to show the vanishing of the Poisson brackets.

PACS numbers: $02.10 .0 x, 02.30 . I k, 87.23 .-n$

1. Periodic Lotka-Volterra system

The Toda lattice is known to have soliton solutions [1]. The periodic Toda lattice is a typical nonlinear integrable system, which has m conserved quantities [2-4] for $2 m$ variables. The quantities are obtained by using the Lax representation [3,4] as well as by using a combinatorial method [2]. Another typical system is a periodic Lotka-Volterra system of competing species

$$
\begin{equation*}
\frac{\mathrm{d} P_{i}}{\mathrm{~d} t}=P_{i}\left(\sum_{j=1}^{s} P_{i-j}-\sum_{j=1}^{s} P_{i+j}\right) \tag{1}
\end{equation*}
$$

for relative abundances $P_{i}, i=1,2, \ldots, m$. The system (1) with $s=1$ is known to be an integrable discretization of Korteweg de Vries equation [5-8]. The Lax representation is

[^0]obtained for the general integer $s, 0<s<\frac{m}{2}$, by Bogoyavlensky [7-11], which gives the conserved quantities as in the case of the Toda lattice. For the non-periodic case of infinite m, soliton solutions are known as in the case of the Toda lattice [12, 13].

The interpretation of Hamiltonian structures and Lax representations in the framework of the r-matrix theory [14-18] is useful to study the Toda lattice, the Lotka-Volterra system equation (1) and other related problems. Extending the study [17] of $s=1$, the vanishing of the Poisson brackets for the Hamiltonian structure of equation (1) was naturally shown in [19] considering the r-matrix for the Lax representation [8, 18], which is the solution of the Yang-Baxter equation.

Hamiltonian structure of Lotka-Volterra systems gives various interesting problems [20-22]. Here we restrict our attention to equation (1) and consider the Poisson structure [8] as in section 2. For the case $m=2 s+1$ for equation (1), the $s+1$ conserved quantities are given by using a combinatorial method [25]. The quantities are obtained from a deterministic approximation of the quantities (martingales) for a stochastic model of competing species [23, 24]. We extend the combinatorial method [25] in section 3 to introduce an elementary geometry [26-28], which gives another approach to the vanishing of the Poisson brackets for the case $m=2 s+1$. We associate a set of points on a circle with a set of species of the Lotka-Volterra system, where the dominance relations between points are given by the dominance relations between the species. We associate each term of the conserved quantities with a subset of points on the circle, which simplifies the argument to show the vanishing of the Poisson brackets as given in section 4. In section 5 we discuss possible problems to apply our method. We briefly show that our combinatorial method is obtained to calculate the asymptotic probability of coexistence of species in a population [24], as in a problem of population genetics [32].

2. Conserved quantities and Hamiltonian structure

The conserved quantities of equation (1), for positive integers m and $s<\frac{m}{2}$, are obtained systematically from the Lax representation by Bogoyavlensky [8]. For example the first three conserved quantities [19] are

$$
\begin{align*}
& I_{1}=\sum_{i=1}^{m} P_{i} \tag{2}\\
& I_{2}=\sum_{i=1}^{m}\left(\frac{1}{2} P_{i}^{2}+P_{i} \sum_{j=1}^{s} P_{i+j}\right) \tag{3}\\
& I_{3}=\sum_{i=1}^{m}\left(\frac{1}{3} P_{i}^{3}+P_{i} \sum_{j=1}^{s} P_{i+j} \sum_{l=0}^{j+s} P_{i+l}\right) . \tag{4}
\end{align*}
$$

Here we introduce another system of conserved quantities by using a combinatorial method. The dynamical system, equation (1), has the Poisson structure [8], and we apply the structure to our case $m=2 s+1$. We show the vanishing of the Poisson bracket for our system of conserved quantities [25].

Define $a_{i j}$ by the equation

$$
\begin{equation*}
\sum_{j=1}^{2 s+1} a_{i j} P_{j} \equiv \sum_{k=1}^{s} P_{i-k}-\sum_{k=1}^{s} P_{i+k} \tag{5}
\end{equation*}
$$

We say the species i dominates the species $j(j \prec i)$ if $a_{i j}=1$. If $a_{i j}=-1$, we say the species i is dominated by the species $j(i \prec j)$. Consider $2 \alpha+1$ species out of the $2 s+1$ species. If each of the $2 \alpha+1$ species dominates the other α species and is dominated by the other remaining α species, then we say the $2 \alpha+1$ species are in a regular tournament of order $2 \alpha+1$. Take $2 \alpha+1$ individuals (particles) at random from the system. Let G_{α} be the probability that the corresponding $2 \alpha+1$ species of the $2 \alpha+1$ particles are in a regular tournament, then the $G_{\alpha}, \alpha=0,1,2, \ldots, s$, are conserved quantities [25], that is to say,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} G_{\alpha}=0 \tag{6}
\end{equation*}
$$

For example, for the case $2 s+1=5$, we have the conserved quantities,

$$
\begin{align*}
& G_{0}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5} \tag{7}\\
& G_{1}=P_{1} P_{2} P_{4}+P_{2} P_{3} P_{5}+P_{3} P_{4} P_{1}+P_{4} P_{5} P_{2}+P_{5} P_{1} P_{3} \tag{8}\\
& G_{2}=P_{1} P_{2} P_{3} P_{4} P_{5} \tag{9}
\end{align*}
$$

Put $v_{i}=\log \left(P_{i}\right)$ for $i=1,2, \ldots, 2 s+1$ and Λ as the skew-symmetric operator with the entries

$$
\lambda_{i, i-k}=1, \quad \lambda_{i, i+k}=-1, \quad k=1,2, \ldots, s
$$

Equation (1) takes the form of the Poisson structure,

$$
\begin{equation*}
\dot{v}_{i}=\sum_{k=1}^{s} \exp \left[v_{i-k}\right]-\sum_{k=1}^{s} \exp \left[v_{i+k}\right]=\sum_{k=-s}^{s} \lambda_{i k} \exp \left[v_{i+k}\right]=\sum_{j=1}^{2 s+1} \lambda_{i j} \frac{\partial H}{\partial v_{j}} \tag{10}
\end{equation*}
$$

with the Hamiltonian

$$
\begin{equation*}
H=\sum_{j=1}^{2 s+1} \exp \left[v_{j}\right] \tag{11}
\end{equation*}
$$

Putting $P_{i}=\exp \left[v_{i}\right]$ for $i=1,2, \ldots, 2 s+1$ into G_{α}, we get the conserved quantities $F_{\alpha}, \alpha=0,1, \ldots, s$, of equation (10). For example for $s=2$,
$F_{0}=\exp \left[v_{1}\right]+\exp \left[v_{2}\right]+\exp \left[v_{3}\right]+\exp \left[v_{4}\right]+\exp \left[v_{5}\right]$,
$F_{1}=\exp \left[v_{1}+v_{2}+v_{4}\right]+\exp \left[v_{2}+v_{3}+v_{5}\right]+\exp \left[v_{3}+v_{4}+v_{1}\right]$
$+\exp \left[v_{4}+v_{5}+v_{2}\right]+\exp \left[v_{5}+v_{1}+v_{3}\right]$,
$F_{2}=\exp \left[v_{1}+v_{2}+v_{3}+v_{4}+v_{5}\right]$.

Note that each of the conserved quantities is not the Casimir function. We give a proof of the following theorem of the vanishing of the Poisson brackets for equation (10).

Theorem

$$
\begin{equation*}
\left\{F_{q}, F_{r}\right\}=\sum_{i, j=1}^{2 s+1} \lambda_{i j} \frac{\partial F_{q}}{\partial v_{i}} \frac{\partial F_{r}}{\partial v_{j}}=0, \tag{15}
\end{equation*}
$$

for $q, r=1,2, \ldots, s$.

3. Configurations of points on a circle

Consider two points on a unit circle, X and Y, whose coordinates are $(\cos x, \sin x)$ and $(\cos y, \sin y), 0 \leqslant x, y<2 \pi$, respectively. If the counterclockwise way from X to Y on the circle is shorter than the clockwise way, we denote $X \prec Y$. If the counterclockwise way from Y to X on the circle is shorter than the clockwise way, we denote $Y \prec X$. We define $I_{X, Y}=1$ for $Y \prec X, I_{X, Y}=-1$ for $X \prec Y$, and $I_{X, Y}=0$ otherwise. Let us denote the shorter arc with end points X, Y, by the $\operatorname{arc}[X, Y]$.

Consider a unit circle. Take $2 s+1$ diameters, $j=1, \ldots, 2 s+1$, arbitrarily on it. Number the $2(2 s+1)$ ends (points) of the diameters in counterclockwise way starting from an arbitrary end (point). Name the points $1,3,5, \ldots, 2(2 s+1)-1$ as $W_{1}, W_{2}, \ldots, W_{2 s+1}$ respectively, and $2,4,6, \ldots, 2(2 s+1)$ as $w_{1}, w_{2}, \ldots, w_{2 s+1}$ respectively. Let us denote the set of points as $W=\left\{W_{1}, W_{2}, \ldots, W_{2 s+1}\right\}$ and $w=\left\{w_{1}, w_{2}, \ldots, w_{2 s+1}\right\}$. The $2 s+1$ points (species) $W_{1}, W_{2}, \ldots, W_{2 s+1}$ are in a regular tournament of order $2 s+1$, as $W_{j} \prec W_{j+1}, W_{j+2}, \ldots, W_{j+s}$ and $W_{j-1}, W_{j-2}, \ldots, W_{j-s} \prec W_{j}$, for $j=1,2, \ldots, 2 s+1$. Each of the $2 s+1$ points (species) W_{i} have variable $P_{i}(t)$ for $i=1,2, \ldots, 2 s+1$, which evolves by equation (1) with $m=2 s+1$. We consider the two subsets of the $2 s+1$ diameters as given in the following I, II and III.

Take the ends of $2 q+1$ diameters out of the above $2 s+1$ diameters in counterclockwise way as $A_{1}, A_{2}, \ldots, A_{2 q+1}$, where $\left\{A_{1}, A_{2}, \ldots, A_{2 q+1}\right\}=A \subset W$. Take the ends of $2 r+1$ diameters out of the above $2 s+1$ diameters in counterclockwise way as $B_{1}, B_{2}, \ldots, B_{2 r+1}$, where $\left\{B_{1}, B_{2}, \ldots, B_{2 r+1}\right\}=B \subset W$. Then the following I, II and III are mutually equivalent.
(I) $a_{1} \prec A_{1} \prec a_{2} \prec A_{2} \cdots \prec a_{j} \prec A_{j} \prec a_{j+1} \cdots a_{2 q+1} \prec A_{2 q+1} \prec a_{1}$, where $\left\{a_{1}, a_{2}, \ldots, a_{2 q+1}\right\}=a \subset w$ and a_{j+q+1} is the other end of the diameter with the end A_{j} for $j=1,2, \ldots, 2 q+1$.
$b_{1} \prec B_{1} \prec b_{2}, \prec B_{2} \ldots \prec b_{j} \prec B_{j} \prec b_{j+1} \ldots b_{2 r+1} \prec B_{2 r+1} \prec b_{1}$, where $\left\{b_{1}, b_{2}, \ldots, b_{2 r+1}\right\}=b \subset w$ and b_{k+r+1} is the other end of the diameter with the end B_{k} for $k=1,2, \ldots, 2 r+1$.
(II) $A_{j} \prec A_{j+1}, A_{j+2}, \ldots, A_{j+q}$ and $A_{j-1}, A_{j-2}, \ldots, A_{j-q} \prec A_{j}$, for $j=1,2, \ldots, 2 q+1$. $B_{k} \prec B_{k+1}, B_{k+2}, \ldots, B_{k+r}$ and $B_{k-1}, B_{k-2}, \ldots, B_{k-r} \prec B_{k}$, for $k=1,2, \ldots$, $2 r+1$.
(III) The points $A_{1}, A_{2}, \ldots, A_{2 q+1}$, are in a regular tournament of order $2 q+1$.

The points $B_{1}, B_{2}, \ldots, B_{2 r+1}$ are in a regular tournament of order $2 r+1$.
Assume there exist exactly $0<\gamma$ arcs $\left[A_{j_{l}}, B_{k_{l}}\right], A_{j_{l}} \in A$ and $B_{k_{l}} \in B, l=1,2, \ldots, \gamma$ with no point of $a \cup A \cup b \cup B$ in the arc $\left[A_{j_{l}}, B_{k_{l}}\right]$ other than $A_{j_{l}}, B_{k_{l}}$.

We call $B_{k_{l}}^{\prime}=A_{j_{l}}$ and $A_{j_{l}}^{\prime}=B_{k_{l}}$ for each pair of points $\left\{A_{j_{l}}, B_{k_{l}}\right\}, l=1,2, \ldots, \gamma, A_{j}^{\prime}=$ A_{j} for A_{j} which does not coincide with any one of $A_{j_{l}}, l=1,2, \ldots, \gamma$, for $j=1,2, \ldots, 2 q+$ 1 , and $B_{k}^{\prime}=B_{k}$ for B_{k} which does not coincide with any one of $B_{k_{l}}, l=1,2, \ldots, \gamma$, for $k=1,2, \ldots, 2 r+1$.

Let us call the pair of sets $A^{\prime}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{2 q+1}^{\prime}\right\}$ and $B^{\prime}=\left\{B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{2 r+1}^{\prime}\right\}$, the conjugate pair of sets of the above pair of sets, $A=\left\{A_{1}, A_{2}, \ldots, A_{2 q+1}\right\}$ and $B=\left\{B_{1}, B_{2}, \ldots, B_{2 r+1}\right\}$.

We see,
(I') $a_{1} \prec A_{1}^{\prime} \prec a_{2} \prec A_{2}^{\prime} \cdots \prec a_{j} \prec A_{j}^{\prime} \prec a_{j+1} \cdots a_{2 q+1} \prec A_{2 q+1}^{\prime} \prec a_{1}$, where a_{j} is the other end of the diameter with the end A_{j+q} for $j=1,2, \ldots, 2 q+1$ and $\left\{a_{1}, a_{2}, \ldots, a_{2 q+1}\right\}=a \subset w$.
$b_{1} \prec B_{1}^{\prime} \prec b_{2}, \prec B_{2}^{\prime} \ldots \prec b_{j} \prec B_{j}^{\prime} \prec b_{j+1} \ldots b_{2 r+1} \prec B_{2 r+1}^{\prime} \prec b_{1}$, where b_{k} is the other end of the diameter with the end B_{k+r} for $k=1,2, \ldots, 2 r+1$ and $\left\{b_{1}, b_{2}, \ldots, b_{2 r+1}\right\}=b \subset w$.
(II') $A_{j}^{\prime} \prec A_{j+1}^{\prime}, A_{j+2}^{\prime}, \ldots, A_{j+q}^{\prime}$ and $A_{j-1}^{\prime}, A_{j-2}^{\prime}, \ldots, A_{j-q}^{\prime} \prec A_{j}^{\prime}$, for $j=1,2, \ldots, 2 q+1$. $B_{k}^{\prime} \prec B_{k+1}^{\prime}, B_{k+2}^{\prime}, \ldots, B_{k+r}^{\prime}$ and $B_{k-1}^{\prime}, B_{k-2}^{\prime}, \ldots, B_{k-r}^{\prime} \prec B_{k}^{\prime}$, for $k=1,2, \ldots$, $2 r+1$.
(III') The points of the set $A^{\prime}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{2 q+1}^{\prime}\right\}$ are in a regular tournament of order $2 q+1$.

The points of the set $B^{\prime}=\left\{B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{2 r+1}^{\prime}\right\}$ are in a regular tournament of order $2 r+1$.
We see that $\left(A^{\prime}\right)^{\prime}=A,\left(B^{\prime}\right)^{\prime}=B$ and $A \cup B=A^{\prime} \cup B^{\prime}$. The conjugate pair of sets A and B is a pair of sets A^{\prime} and B^{\prime}, and the conjugate pair of sets A^{\prime} and B^{\prime} is a pair of sets A and B.

4. Vanishing of the Poisson brackets

The theorem is obvious for the case $q=r$. In this section we assume $q \neq r$. We have the following lemmas from I, II, III and $\mathrm{I}^{\prime}, \mathrm{II}^{\prime}$, III ${ }^{\prime}$ of the previous section.

Lemma 1. There exist $0<\gamma \operatorname{arcs}\left[A_{j_{l}}, B_{k_{l}}\right] l=1,2, \ldots, \gamma$ with no point of $a \cup A \cup b \cup B$ in the arc $\left[A_{j_{l}}, B_{k_{l}}\right]$ other than $A_{j_{l}}, B_{k_{l}}$.

Proof. We can assume $q<r$ without loss of generality. We see that there is an arc generated by the above $2 q+1$ points $a_{1}, a_{2}, \ldots, a_{2 q+1}$, with at least two points of the above $2 r+1$ points $b_{1}, b_{2}, \ldots, b_{2 r+1}$. Consider the case in which the $\operatorname{arc}\left[a_{i}, a_{i+1}\right]$ has two points of b, as $a_{j} \prec b_{k} \prec b_{k+1} \prec a_{j+1}$. Then for example if $a_{j} \prec b_{k} \prec A_{j} \prec B_{k} \prec b_{k+1} \prec a_{j+1}$, the arc $\left\{A_{j}, B_{k}\right\}$ has no point of $a \cup A \cup b \cup B$ in the arc $\left[A_{j}, B_{k}\right]$ other than A_{j}, B_{k}. For example if $a_{j} \prec A_{j} \prec b_{k} \prec B_{k} \prec b_{k+1} \prec a_{j+1}$, the arc $\left[B_{k+1+r}, A_{j+1+q}\right]$ has no point of $a \cup A \cup b \cup B$ other than B_{k+1+r}, A_{j+1+q}.

We can apply the above argument to the other possible cases.
Lemma 2. Each of the points $A_{j_{l}}, B_{k_{l}}$ belongs to one and only one arc, $\left[A_{j_{l}}, B_{k_{l}}\right]$, for $l=1,2, \ldots, \gamma$.
Lemma 3. For each $l=1,2, \ldots, \gamma$,

$$
\begin{align*}
& \sum_{k=1}^{2 r+1} I_{A_{j l}, B_{k}}+\sum_{k=1}^{2 r+1} I_{A_{j_{l}}^{\prime}, B_{k}^{\prime}}=0 \tag{16}\\
& \sum_{j=1}^{2 q+1} I_{A_{j}, B_{k_{l}}}+\sum_{j=1}^{2 q+1} I_{A_{j}^{\prime}, B_{k_{l}}^{\prime}}=0 \tag{17}
\end{align*}
$$

Proof. For each $l=1,2, \ldots, \gamma$,

$$
\begin{equation*}
I_{A_{j_{l}}, B_{k_{l}}}+I_{A_{j^{\prime},}, B_{k_{l}^{\prime}}^{\prime}}=0 \tag{18}
\end{equation*}
$$

We have also

$$
\begin{align*}
& \sum_{k \neq k_{l}} I_{A_{j}, B_{k}}=\sum_{k \neq k_{l}} I_{A_{j l}^{\prime}, B_{k}^{\prime}}=0, \tag{19}\\
& \sum_{j \neq j_{l}} I_{A_{j}, B_{k_{l}}}=\sum_{j \neq j_{l}} I_{A_{j}^{\prime}, B_{k_{l}}^{\prime}}=0, \tag{20}
\end{align*}
$$

which give equations (16) and (17).

Lemma 4.

(1) The number of points $A_{j} \in A, j \neq j_{l}$ for $l=1,2, \ldots, \gamma$, in the arc $\left[B_{k}, b_{k+1}\right]$, is equal to the number of points of $A_{j} \in A, j \neq j_{l}$ for $l=1,2, \ldots, \gamma$, in the $\operatorname{arc}\left[b_{k+r+1}, B_{k+r+1}\right]$ for $k=1,2, \ldots, 2 r+1$.
(2) The number of points of $B_{k} \in B, k \neq k_{l}$ for $l=1,2, \ldots, \gamma$, in the arc $\left[A_{j}, a_{j+1}\right]$ is equal to the number of points of $B_{k} \in B, k \neq k_{l}$ for $l=1,2, \ldots, \gamma$, in the arc $\left[a_{j+q+1}, A_{j+q+1}\right]$ for $j=1,2, \ldots, 2 q+1$.

Proof. By considering lemma 2, the above (1) is easily shown for the following two cases:
(1) $B_{k_{l}} \prec A_{j_{l}} \prec a_{j_{l}+1} \prec A_{j_{l}+1} \prec a_{j_{l}+2} \cdots \prec a_{j_{l}+v} \prec b_{k_{l}+1}$;
(2) $B_{k_{l}} \prec A_{j_{l}} \prec a_{j_{l}+1} \prec A_{j_{l}+1} \prec a_{j_{l}+2} \cdots \prec a_{j_{l}+v} \prec A_{j_{l}+v} \prec b_{k_{l}+1}$.

The other cases are also shown in the same way.
Lemma 5. For $j=1,2, \ldots, 2 q+1$,

$$
\begin{equation*}
\sum_{k \neq k_{l} \text { for } l=1,2, \ldots, \gamma} I_{A_{j}, B_{k}}=\sum_{k \neq k_{l} \text { for } l=1,2, \ldots, \gamma} I_{A_{j}^{\prime}, B_{k}^{\prime}}=0 . \tag{21}
\end{equation*}
$$

For $k=1,2, \ldots, 2 r+1$,

$$
\begin{equation*}
\sum_{j \neq j_{l} \text { for } l=1,2, \ldots, \gamma} I_{A_{j}, B_{k}}=\sum_{j \neq j_{l} \text { for } l=1,2, \ldots, \gamma} I_{A_{A_{j}^{\prime}}, B_{k}^{\prime}}=0 . \tag{22}
\end{equation*}
$$

Proof. We see from lemma 4.

Lemma 6. For $j=1,2, \ldots, 2 q+1$,

$$
\begin{equation*}
\sum_{k=1}^{2 r+1}\left(I_{A_{j}, B_{k}}+I_{A_{j}^{\prime}, B_{k}^{\prime}}\right)=0 \tag{23}
\end{equation*}
$$

For $k=1,2, \ldots, 2 r+1$,

$$
\begin{equation*}
\sum_{j=1}^{2 q+1}\left(I_{A_{j}, B_{k}}+I_{A_{j}^{\prime}, B_{k}^{\prime}}\right)=0 \tag{24}
\end{equation*}
$$

Proof. We see from lemmas 3 and 5 .

Lemma 7.

$$
\begin{equation*}
\sum_{j=1}^{2 q+1} \sum_{k=1}^{2 r+1}\left(I_{A_{j}, B_{k}}+I_{A_{j}^{\prime}, B_{k}^{\prime}}\right)=0 \tag{25}
\end{equation*}
$$

Proof. We see directly from lemma 6.

Let us determine t^{\prime} 's by $A_{j}=W_{t\left(A_{j}\right)}$ and $A_{j}^{\prime}=W_{t\left(A_{j}^{\prime}\right)}$, for $j=1,2, \ldots, 2 q+1$, and $B_{k}=W_{t\left(B_{k}\right)}$ and $B_{k}^{\prime}=W_{t\left(B_{k}^{\prime}\right)}$ for $k=1,2, \ldots, 2 r+1$.

Lemma 8. Let each of the $2 s+1$ points W_{i} have variable $v_{i}(t)$ for $i=1,2, \ldots, 2 s+1$, which evolves by equation (10) with $m=2 s+1$. Consider the above pair of sets A and B and its
conjugate pair of sets A^{\prime} and B^{\prime}. Consider the original name of the points in the sets A, B, A^{\prime} and B^{\prime}. Then for the Poisson brackets,

$$
\begin{array}{r}
\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right], \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]\right\} \\
=\sum_{l, m=1}^{2 s+1} \lambda_{l m} \frac{\partial \exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right]}{\partial v_{l}} \frac{\partial \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]}{\partial v_{m}}, \\
\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}\right], \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}^{\prime}\right)}\right]\right\} \\
=\sum_{l, m=1}^{2 s+1} \lambda_{l m} \frac{\partial \exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}\right]}{\partial v_{l}} \frac{\partial \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}^{\prime}\right)}\right]}{\partial v_{m}} \tag{27}
\end{array}
$$

we have
$\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right], \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]\right\}+\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}\right], \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}^{\prime}\right)}\right]\right\}=0$
Proof. We see $I_{A_{i}, A_{j}}=\lambda_{i j}$ for the $i, j, 1,2, \ldots, 2 s+1$. Since

$$
\begin{equation*}
\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}+\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]=\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}+\sum_{k=1}^{2 r+1} v_{t\left(B_{k}^{\prime}\right)}\right] \tag{29}
\end{equation*}
$$

by using lemma 7 we have

$$
\begin{gather*}
\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right], \exp \left[\sum_{j=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]\right\}+\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}\right], \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}^{\prime}\right)}\right]\right\} \\
=\sum_{l, m=1}^{2 s+1} \lambda_{l m}\left(\frac{\partial \exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right]}{\partial v_{l}} \frac{\partial \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]}{\partial v_{m}}\right. \tag{30}\\
\left.+\frac{\partial \exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}\right]}{\partial v_{l}} \frac{\partial \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}^{\prime}\right)}\right]}{\partial v_{m}}\right) \tag{31}\\
=\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}+\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right] \sum_{j=1}^{2 q+1} \sum_{k=1}^{2 r+1}\left(I_{A_{j}, B_{k}}+I_{A_{j}^{\prime}, B_{k}^{\prime}}\right)=0 . \tag{32}
\end{gather*}
$$

Proof of theorem. Let T_{α} be the set of all possible tournaments generated by the $2 \alpha+1$ points of the set W for $\alpha=1,2, \ldots, s$. Then

$$
\begin{align*}
\left\{F_{q}, F_{r}\right\} & =\left\{\sum_{A \subset T_{q}} \exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right], \sum_{B \subset T_{r}} \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]\right\} \\
& =\sum_{A \subset T_{q}} \sum_{B \subset T_{r}}\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right], \exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]\right\}=0 \tag{33}
\end{align*}
$$

Since the Poisson bracket for each pair of the sets $A \in T_{q}$ and $B \in T_{r},\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}\right)}\right]\right.$, $\left.\exp \left[\sum_{k=1}^{2 r+1} v_{t\left(B_{k}\right)}\right]\right\}$ is canceled by the Poisson bracket $\left\{\exp \left[\sum_{j=1}^{2 q+1} v_{t\left(A_{j}^{\prime}\right)}\right]\right.$, $\exp \left[\sum_{k=1}^{2 r+1}\right.$ $\left.\left.v_{t\left(B_{k}^{\prime}\right)}\right]\right\}$ for the conjugate pair of sets $A^{\prime} \in T_{q}$ and $B^{\prime} \in T_{r}$ which is uniquely determined by the pair A and B.

5. Motivation and discussion

We can generalize the combinatorial method to get the conserved quantities [30] for the general periodic case by Bogoyavlensky [7]. We briefly review our previous study [30] to suggest our next problem. We also show that the form of conserved quantities is convenient to study a stochastic model of interacting particles which is a simplified model for population genetics, ecology and other problems [23, 24, 29, 30]. The form of conserved quantities, originally obtained to calculate the asymptotic probability of coexistence of species, works to study the deterministic approximation of the stochastic model as a nonlinear integrable system, as we could see in the previous sections.

Consider an interacting particle system of n particles for competition among m species, $1,2, \ldots, m$, whose abundances of particles at time t are $n_{1}(t), n_{2}(t), \ldots, n_{m}(t)$, respectively. For each pair of species a dominance relation is defined. Namely, by an interaction of a particle of species i and a particle of species j, the interacting two particles become two particles of species i with probability $1 / 2+a_{i j}$ and become two particles of species j with probability $1 / 2+a_{j i}$ where $a_{i j}$ are defined by

$$
\begin{equation*}
2 \sum_{j=1}^{m} a_{i j} P_{j} \equiv \sum_{k=0}^{s} P_{i-k}-\sum_{k=0}^{s} P_{i+k} . \tag{34}
\end{equation*}
$$

From the skew symmetry $a_{i j}+a_{j i}=0$, we see that the total number of particles does not change by interactions, that is to say, $n_{1}(t)+n_{2}(t)+\cdots+n_{m}(t)=n$. A random interaction takes place, where each interacting pair of particles is equally likely to be chosen, in a time interval Δt.

Note that the case $s=0$ of our stochastic model gives the Moran version [31] of the Fisher-Wright model for random sampling effect in population genetics.

For infinite n, the relative abundance P_{i} of species $1,2, \ldots, m$ is given by

$$
\begin{equation*}
\frac{\mathrm{d} P_{i}}{\mathrm{~d} t}=P_{i}\left(\sum_{k=0}^{s} P_{i-k}-\sum_{k=0}^{s} P_{i+k}\right) . \tag{35}
\end{equation*}
$$

We introduce our conserved quantities. We say the species i dominates the species $j(j \prec i)$, if $2 a_{i j}=1$. If $2 a_{i j}=-1$, we say the species i is dominated by the species $j(i \prec j)$. If $a_{i j}=0$, we say the species i is neutral to the species $j(i \sim j, j \sim i)$. Hence the relation $i \prec j \prec k$ does not imply $i \prec k$. Consider l species out of the m species. If each of the l species dominates the q species out of the other $l-1$ species, it is dominated by the q species out of the remaining $l-q-1$ species, and is neutral to the other remaining $l-2 q-1$ species, then we say that the l species are in a (l, q) regular tournament.

For example, consider the case of seven species with the relations, $i-3 \sim i, i-2 \prec$ $i, i-1 \prec i$, for each species $i=1,2, \ldots, 7$. The seven species are in a $(7,2)$ regular tournament.

Take l particles at random from the system. Let $G_{l, q}$ be the probability that the corresponding species of the l particles are in a (l, q) regular tournament. Then the probability $G_{l, q}$ is the conserved quantity of equation (35),

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} G_{l, q}=0 \tag{36}
\end{equation*}
$$

For example, when $m=7$ and $s=2$, the conserved quantities are $G_{1,0}=P_{1}+P_{2}+$ $P_{3}+P_{4}+P_{5}+P_{6}+P_{7}, G_{2,0}=P_{1} P_{4}+P_{2} P_{5}+P_{3} P_{6}+P_{4} P_{7}+P_{5} P_{1}+P_{6} P_{2}+P_{7} P_{3}, G_{4,1}=$ $P_{1} P_{2} P_{4} P_{6}+P_{2} P_{3} P_{5} P_{7}+P_{3} P_{4} P_{6} P_{1}+P_{4} P_{5} P_{7} P_{2}+P_{5} P_{6} P_{1} P_{3}+P_{6} P_{7} P_{2} P_{4}+P_{7} P_{1} P_{3} P_{5}, G_{7,2}=$ $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7}$.

When $m=2 s+1, G_{2 r+1, r}$, which is equal to $G_{2 r+1}$ in section 2 , is conserved quantities for $r=0,1, \ldots, s$.

To extend our combinatorial method to show the vanishing of the Poisson bracket for general m and s is our next problem.

We briefly explain the stochastic model [23,24]. Consider the case $m=3, s=1$ of finite n. Let the abundances of the three types be $\left(n_{1}, n_{2}, n_{3}\right)$ at time t and consider the product of the abundances of three species. The abundances at $t+\Delta t$ are
$\left(n_{1}-1, n_{2}+1, n_{3}\right) \quad$ with probability $\frac{2 n_{1} n_{2}}{n(n-1)}$
$\left(n_{1}, n_{2}-1, n_{3}+1\right)$
with probability $\frac{2 n_{2} n_{3}}{n(n-1)}$
$\left(n_{1}+1, n_{2}, n_{3}-1\right)$
with probability $\frac{2 n_{3} n_{1}}{n(n-1)}$
$\left(n_{1}, n_{2}, n_{3}\right)$
with probability
$\frac{n_{1}\left(n_{1}-1\right)+n_{2}\left(n_{2}-1\right)+n_{3}\left(n_{3}-1\right)}{n(n-1)}$.
So the expected product at $t+\Delta t$ is equal to $\left(1-2 \frac{\binom{3}{2}}{n(n-1)}\right) n_{1} n_{2} n_{3}$. Consider the probability $G_{1}(t)$ at time t. For the stochastic process $G_{1}(t)$, we have the expectation of $G_{1}(t+\Delta t)$ conditioning on the value $G_{1}(t)$ as

$$
\begin{equation*}
E\left(G_{1}(t+\Delta t) \mid G_{1}(t)\right)=\left(1-2 \frac{\binom{3}{2}}{n(n-1)}\right) G_{1}(t) \tag{37}
\end{equation*}
$$

For the general case $m=2 s+1$ we have

$$
\begin{equation*}
E\left(G_{r}(t+\Delta t) \mid G_{r}(t)\right)=\left(1-2 \frac{\binom{2 r+1}{2}}{n(n-1)}\right) G_{r}(t) \tag{38}
\end{equation*}
$$

for $r=0,1,2, \ldots, s$. We put $\frac{2}{n-1}=\Delta t$. We then obtain

$$
\begin{equation*}
E\left(G_{r}(t+\Delta t) \mid G_{r}(t)\right)=\left(1-\binom{2 r+1}{2} \frac{\Delta t}{n}\right) G_{r}(t) \tag{39}
\end{equation*}
$$

for $r=0,1,2, \ldots, s$. Applying this formula and making use of the argument by Kimura [32] for the Fisher-Wright model, we can show that the asymptotic probability of coexistence of the species, which make regular tournament of order $2 r+1$, is proportional to the expected value of $G_{r}(t)$ starting from $G_{r}(0)$ by calculating the second largest eigen value and its eigen vector of the corresponding Markov chain [24].

For the general case of m and s, we have the expected value of $G_{l, q}$ at time $t+u$ conditioning on the value of $G_{l, q}$ at time t approximating $\left(1-\binom{l}{2} \frac{\Delta t}{n}\right)^{\frac{u}{\Delta t}}$ by $\exp \left(-\binom{l}{2} \frac{u}{n}\right)$ as

$$
\begin{equation*}
E\left(G_{l, q}(t+u) \mid G_{l, q}(t)\right)=\exp \left(-\binom{l}{2} \frac{u}{n}\right) G_{l, q}(t) \tag{40}
\end{equation*}
$$

which means the expected $G_{l, q}$ is time invariant for $n=\infty$. From the above we see that our conserved quantities were obtained naturally to study the asymptotic behavior of the stochastic model. We get a system of stochastic differential equations as a diffusion approximation for the change of relative abundances of our stochastic model and obtain an analogous result to equation (40) for $G_{l, q}$ applying the Ito formula [29, 30].

Another possible application of our method will be to the Toda lattice. Henon's method [2] to get conserved quantities is combinatorial. To extend our combinatorial method, we need to define the conjugate pair of sets for the conserved quantities and to show the vanishing of the Poisson bracket for the Toda lattice. This is another next problem for our study.

Acknowledgments

This work was done while the author was at Department of Mathematics, Queen's University, Canada. The author is grateful to Oleg Bogoyavlensky for his hospitality, helpful discussion and comments. The author is also grateful to Rei Inoue for answering the author's questions. Thanks are also due to the referees for suggestions.

References

[1] Toda M 1967 Vibration of a chain with nonlinear interaction J. Phys. Soc. Japan 22 431-6
[2] Henon M 1974 Integrals of the Toda lattice Phys. Rev. B 9 1921-3
[3] Flaschka H 1974 The Toda lattice: II. Existence of integrals Phys. Rev. B 9 1924-5
[4] Bogoyavlensky O I 1976 On perturbations of the periodic Toda lattice Commun. Math. Phys. 51 201-9
[5] Kac M and van Moerbeke P 1975 On an explicitly solvable system of nonlinear differential equations related to certain Toda lattices Adv. Math. 16 160-9
[6] Moser J 1975 Three integrable Hamiltonian systems connected with isospectral deformations Adv. Math. 16 197-220
[7] Bogoyavlensky O I 1987 Integrable dynamical system associated with the KdV equation Izv. Acad. Nauk SSSR, Ser. Math. 51 1123-41
[8] Bogoyavlensky O I 1988 Integrable discretizations of the KdV equation Phys. Lett. A 134 34-8
[9] Bogoyavlenskii O I 1989 Algebraic constructions of certain integrable equations Math. USSR Izv. 33 39-65
[10] Bogoyavlenskii O I 1991 A theorem on two commuting automorphisms, and integrable differential equations Math. USSR Izv. 36 263-79
[11] Bogoyavlenskii O I 1991 Algebraic constructions of integrable dynamical systems-extensions of the Volterra system Russ. Math. Surveys 46 1-64
[12] Narita K 1982 Soliton solution to extended Volterra equation J. Phys. Soc. Japan 51 1682-5
[13] Hu X B and Bullough R K 1997 Backland transformation and nonlinear superposition formula of the extended Lotka-Volterra equation J. Phys. A: Math. Gen. 30 3635-41
[14] Sklyanin E 1985 The quantum Toda chain Lecture Notes Phys. 226 196-233
[15] Damianou P A 1990 Master symmetries and R-matrices for the Toda lattice Lett. Math. Phys. 20 101-12
[16] Damianou P A 1991 The Volterra Model and its relation to the Toda lattice Phys. Lett. A 155 126-32
[17] Volkov A Yu 1992 Quantum Volterra model Phys. Lett. A 167 344-55
[18] Suris Yu B 1994 On the r-matrix interpretation of Bogoyavlensky lattices Phys. Lett. A 188 256-62
[19] Inoue R and Hikami K 1998 The Hungry-Volterra model-the classical and quantum integrable structures J. Phys. Soc. Japan 67 87-92
[20] Plank M 1995 Hamiltonian structures for the n-dimensional Lotka-Volterra equations J. Math. Phys. 36 3520-34
[21] Hernández-Bermejo B and Fairén V 1998 Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems J. Math. Phys. 39 6162-74
[22] Bogoyavlenskij O, Itoh Y and Yukawa T 2008 Lotka-Volterra systems integrable in quadratures J. Math. Phys. 49 053501-7
[23] Itoh Y 1973 On a ruin problem with interaction Ann. Inst. Stat. Math. 25 635-41
[24] Itoh Y 1979 Random collision models in oriented graphs J. Appl. Probab. 16 36-44
[25] Itoh Y 1987 Integrals of a Lotka-Volterra system of odd number of variables Prog. Theor. Phys. 78 507-10
[26] Itoh Y 1988 Integrals of a Lotka-Volterra system of infinite species Prog. Theor. Phys. 80 749-51
[27] Itoh Y 1989 Configuration of random points on a circle associated with a generalized Lotka-Volterra equation J. Appl. Probab. 26 898-900
[28] Itoh Y, Maehara H and Tokushige N 2000 Oriented graphs generated by random points on a circle J. Appl. Probab. 37 534-9
[29] Itoh Y 1993 Stochastic model of an integrable nonlinear system J. Phys. Soc. Japan 62 1826-8
[30] Itoh Y 1996 Addendum to stochastic model of an integrable nonlinear system J. Phys. Soc. Japan 6575
[31] Moran P A P 1958 Random processes in genetics Proc. Camb. Phil. Soc. 54 60-71
[32] Kimura M 1955 Random genetic drift in multi-allelic locus Evolution 9 419-35

[^0]: ${ }^{1}$ Address for correspondence: 1588-41 Koshigoe, Kamakura 248-0033, Japan.

